![]() Automatically-closing connector for connecting a liquid injection head to an injection outlet
专利摘要:
The invention relates to an automatically-closing connector. The connector has a closing piston which is rigid and non-deformable; a compression chamber is constituted around the closing piston and is defined upstream by the end wall of the housing and downstream by a peripheral sealing gasket carried by the piston; the outlet of the connector is situated downstream from this gasket and the closing piston has an internal passage with an inlet that opens out into the compression chamber and an outlet that communicates with the outlet of the connector. The connector is applicable to injection devices in the medical field. 公开号:US20010004686A1 申请号:US09/738,342 申请日:2000-12-15 公开日:2001-06-21 发明作者:Jean-Max Huet 申请人:VIGON; IPC主号:A61M39-26
专利说明:
[0001] The invention relates to an automatically-closing connector for connecting a liquid injection head to an injection outlet. [0001] BACKGROUND OF THE INVENTION [0002] The connector is suitable in particular for medical use and more particularly for connecting an injection head and a catheter tube or other duct of a liquid pathway to enable liquid to be inserted into the body. [0002] [0003] Automatically-closing connectors are known that comprise a case which defines a housing which is accessible via an injection inlet duct opening out into the housing through an end wall of the housing, said chamber communicating with an injection outlet, and the inlet duct being designed to enable the injection head to be inserted with lateral sealing into said duct towards the housing, and the connector including a closing piston which is movable in the housing and in the inlet duct between an upstream position in which it closes the duct and towards which it is urged by resilient return means, and a downstream position in which it no longer closes the duct and towards which it is pushed by the injection head when the injection head is inserted into the inlet passage. [0003] [0004] An example of such a connector is described in European patent EP 0 544 581 and the corresponding U.S. Pat. No. 5,380,306. [0004] [0005] Withdrawing the injection head after an injection operation can cause the patient's blood to flow back into the liquid pathway which connects the connector to the patient, thus running the risk of said pathway subsequently being blocked by coagulated blood. [0005] [0006] To avoid this back flow, it is known to provide the connector with a compression chamber that is accessible to the liquid injected by the injection head and which communicates with the outlet of the connector, said chamber being designed so that its volume varies under the effect of the displacement of the closing piston so that withdrawing the injection head causes the volume of the chamber to be reduced and excess liquid to be expelled from the chamber towards the outlet, thereby establishing pressure that opposes the back flow of blood in the pathway leading to the patient. [0006] [0007] Publication WO 98/17192 describes an example of a connector implementing that concept. [0007] [0008] In that example, the compression chamber is constituted inside the closing piston which is complex in structure. [0008] OBJECTS AND SUMMARY OF THE INVENTION [0009] An object of the invention is to provide a connector which has a compression chamber while remaining simple in structure. [0009] [0010] According to the invention, this is achieved by a connector which comprises a case which defines a housing which is accessible via an injection inlet duct opening out into the housing through an end wall ([0010] 4) of the housing, said housing communicating with an injection outlet of the connector, and the inlet duct being designed to enable the injection head to be inserted with lateral sealing into said duct towards the housing, the connector including a rigid and non-deformable closing piston which is movable in the housing and in the inlet duct between an upstream position in which it closes the duct and towards which it is urged by resilient return means, and a downstream position in which it no longer closes the duct and towards which it is pushed by the injection head when the head is inserted into the inlet passage, the connector having a compression chamber accessible to the liquid injected by the injection head and which communicates with the outlet of the connector, the volume of said chamber varying under the effect of the displacement of the closing piston so that withdrawing the injection head causes the volume of the chamber to be reduced and excess liquid in the chamber to be expelled towards the injection outlet, wherein the closing piston is rigid and non-deformable, wherein said compression chamber is a space constituted in the housing around the closing piston and defined upstream by said end wall of the housing and downstream by a peripheral sealing gasket (referred to as the “downstream” gasket) carried by the piston, wherein the outlet of the connector is situated downstream from said gasket, and wherein the closing piston has an internal passage which presents an inlet that opens out into said space and which presents an outlet which communicates with the outlet of the connector. [0011] The terms “upstream” and “downstream” relate here to the travel direction of the fluid going from the injection head towards the outlet of the connector. [0011] [0012] Advantageously, the portion of the piston that moves in the inlet duct carries a peripheral sealing gasket (referred to as the “upstream” gasket) which provides sealing for the duct around the piston. [0012] [0013] Preferably, the closing piston has a proximal portion on which both the upstream and downstream sealing gaskets are fitted, and a distal portion of tubular shape that is directed downstream. [0013] [0014] These two portions can be made together or they can be fitted one to the other. They are advantageously molded out of synthetic resin. [0014] [0015] Such a piston structure is remarkably simple. [0015] [0016] In a preferred embodiment, the distal tubular portion has the internal passage of the piston passing longitudinally therethrough. [0016] [0017] The outlet of the connector can be constituted, for example, by a catheter tube or other liquid duct permanently fixed to the connector, or else via an outlet coupling formed on the connector and which enables a catheter or other liquid duct to be coupled thereto. [0017] [0018] Advantageously, the connector has a fixed gasket placed in the housing around the piston upstream from the outlet of the internal passage of the piston and downstream from the downstream gasket of the piston so as to define a sealed space around the piston between these two gaskets, into which space the injection liquid cannot penetrate and in which it is possible to place a spring which returns the piston upstream. [0018] [0019] In a particular embodiment, the fixed gasket is a part disposed so as to cover the distal end of the piston with lateral sealing of the piston, said gasket having a resiliently-opening slot such that the gasket allows the piston to pass therethrough when the piston is pushed downstream by the injection head. [0019] BRIEF DESCRIPTION OF THE DRAWINGS [0020] Various embodiments of a coupling in accordance with the present invention are described below with reference to the figures of the accompanying drawings, in which: [0020] [0021] FIGS. [0021] 1 to 5 are axial sections through a connector constituting a first embodiment in which the connector constitutes a base for a catheter, the section being shown for differential axial positions of the piston; [0022] FIGS. 6 and 7 are axial sections of a connector constituting a second embodiment in which the connector does not itself constitute a base for a catheter but has an end coupling; and [0022] [0023] FIGS. 8 and 9 are axial sections of another variant of the connector. [0023] MORE DETAILED DESCRIPTION [0024] In the figures, elements that are identical or that correspond are designated by references that are identical or that are associated with the prime symbol. [0024] [0025] The connectors shown in FIGS. [0025] 1 to 5 comprise a case (1) and a closing piston (5). [0026] The case ([0026] 1) defines a housing (2) that is accessible by a tubular inlet duct (3), the housing and the duct being cylindrical and on the same axis, but the right section of the housing being greater than that of the duct such that an annular shoulder (4) exists where the duct joins the chamber and constitutes an end wall at one end of the housing. [0027] The closing piston ([0027] 5) is movable in translation in the housing and in the duct, said piston carrying an upstream sealing gasket (6) in the form of an annular gasket that provides lateral sealing for the portion (5 a) of the piston which moves in the inlet duct, and a downstream sealing gasket (7) in the form of an annular gasket which provides lateral sealing for the portion (5 b) of the piston which moves in the housing. [0028] The space ([0028] 14) situated around the piston in the hosing and defined upstream by the end wall (4) of the housing and downstream by the sealing gasket (7) constitutes a compression chamber whose volume depends on the axial position of the piston. [0029] The portion of the piston which defines the lateral compression chamber is advantageously designed in such a manner that the variation in the volume of this chamber (V[0029] 1-V2) with displacement of the piston is maximal (FIGS. 4 and 5). [0030] A stepped profile is easy to make and suitable for this purpose. [0030] [0031] The inlet duct ([0031] 3) is dimensioned so as to enable an injection head (8) to be inserted into the duct and, where appropriate, as far as the chamber, with lateral sealing in the duct. The duct is shaped, for example, to have a Luer type cone shape. [0032] The closing piston has an internal passage ([0032] 9) with one or more inlets (9 a) opening out into the chamber (14) between the two gaskets (6) and (7) and which has one or more outlets (9 b) opening out into the housing outside the piston, beyond the downstream sealing gasket. [0033] This outlet ([0033] 9 b) of the internal passage of the piston is itself in communication with the outlet of the connector (13). [0034] A fixed gasket is placed in the housing to prevent any liquid communication between the outlet of the piston ([0034] 9 b) and the portion of the housing situated upstream from the gasket, whatever the position of the piston. The portion of the housing between said gasket and the downstream gasket carried by the piston is thus not capable of coming into contact with the injection liquid, and a spring (12) can be placed in said portion to urge the piston upstream. [0035] In the embodiment of FIG. 1, this gasket is constituted by the rear portion of a duck bill shaped check valve formed to engage with lateral sealing the end of the piston which includes the outlet ([0035] 9 b) from the passage, and which is resiliently split so as to open when said end passes and to reclose after the piston has been withdrawn, in conventional manner. [0036] In a variant, the gasket is a simple annular gasket fixed in the housing around the piston and serving solely to provide sealing for the portion of the housing situated upstream from the outlet ([0036] 9 b), like the gasket (11′) in the embodiment of FIGS. 10 and 11. [0037] The case is advantageously made as two distinct portions (A) and (B) which, prior to assembly, enable the spring ([0037] 12) for returning the piston upstream to be put into place in the chamber and the check valve (11) to be put into place. [0038] The outlet from the connector can be made in various ways and the embodiments described herein are merely non-limiting examples. [0038] [0039] In the embodiment of FIGS. [0039] 1 to 5, the outlet from the connector is constituted by the inlet (10) of a catheter tube (13) integrated in the connector, which in turn constitutes a base for the tube. [0040] In the example of FIGS. [0040] 6 to 9, the outlet of the connector is constituted by an outlet coupling (16) which enables the base of a catheter or other duct or another coupling (16′) to be releasably coupled thereto. [0041] The portion ([0041] 5 a) of the closing piston (5) which closes the inlet duct (3) can be made in various ways and the embodiments described herein are merely non-limiting examples. [0042] In the embodiments of FIGS. [0042] 1 to 7, this end (5 a) of the piston is constituted by a solid cylinder which carries the upstream gasket (6) and which has sloping faces (15) at its axial end so that the opening of the inlet duct is closed in progressive manner when the piston is moved. [0043] In the embodiment of FIGS. 8 and 9, the end ([0043] 5 a) of the piston is also a solid cylindrical block which carries the upstream gasket (6′) but its upstream end has a slot (15′) which allows liquid to pass from the injection head when the piston is reached in a position in which said slot opens out into the housing (2) of the case. [0044] The piston can be an elongate body that is molded as a single piece, with a rear portion C forming a block which carries the two gaskets and with a front portion forming a tube D, as in the embodiments of FIGS. [0044] 1 to 7. [0045] In a variant (FIGS. 8, 9) the tubular portion is constituted by a tube (D′) that is separate and fixed to the molded body. [0045] [0046] FIGS. [0046] 1 to 5 show the various stages in the operation of a connector of the invention: [0047] connector at rest (FIG. 1); [0047] [0048] beginning of the stage in which the injection head is inserted (FIG. 2); [0048] [0049] end of the stage in which the injection head is inserted (FIG. 3); and [0049] [0050] progressive withdrawal of the injection head (FIGS. 4 and 5). [0050] [0051] The substance injected by the injection head passes into the chamber ([0051] 14) before penetrating into the internal passage of the piston. When the injection head is withdrawn, the chamber (14) is isolated from the injection head by the upstream gasket (6) as the gasket penetrates into the inlet duct (FIG. 4) so that the liquid present in the chamber is compressed and excess liquid cannot escape into the passage of the piston (FIG. 5). [0052] The other embodiments operate in similar manner: FIG. 6 corresponds to FIG. 1, FIG. 7 corresponds to FIG. 3, and FIGS. 8 and 9 correspond to FIG. 1. [0052] [0053] The invention is not limited to the embodiments described. [0053]
权利要求:
Claims (13) [1" id="US-20010004686-A1-CLM-00001] 1. An automatically-closing connector for coupling an injection head to an injection outlet, in particular for medical use, the connector comprising a case which defines a housing which is accessible via an injection inlet duct opening out into the housing through an end wall of the housing, said housing communicating with an injection outlet of the connector, and the inlet duct being designed to enable the injection head to be inserted with lateral sealing into said duct towards the housing, and the connector including a rigid and non-deformable closing piston which is movable in the housing and in the inlet duct between an upstream position in which it closes the duct and towards which it is urged by resilient return means, and a downstream position in which it no longer closes the duct and towards which it is pushed by the injection head when the head is inserted into the inlet passage, the connector having a compression chamber accessible to the liquid injected by the injection head and which communicates with the outlet of the connector, the volume of said chamber varying under the effect of the displacement of the closing piston so that withdrawing the injection head causes the volume of the chamber to be reduced and excess liquid in the chamber to be expelled towards the injection outlet, wherein the closing piston is rigid and non-deformable, wherein said compression chamber is a space constituted in the housing around the closing piston and defined upstream by said end wall of the housing and downstream by a peripheral sealing gasket (referred to as the “downstream” gasket) carried by the piston, wherein the outlet of the connector is situated downstream from said gasket, and wherein the closing piston has an internal passage which presents an inlet that opens out into the compression chamber and which presents an outlet which communicates with the injection outlet of the connector. [2" id="US-20010004686-A1-CLM-00002] 2. A connector according to claim 1 , in which the portion of the piston that moves in the inlet duct carries a peripheral sealing gasket (referred to as the “upstream” gasket) which provides sealing for the duct around the piston. [3" id="US-20010004686-A1-CLM-00003] 3. A connector according to claim 2 , and in which the piston has a proximal portion on which said upstream gasket and said downstream gasket are fitted and includes a distal tubular portion directed downstream to constitute the major portion of said passage. [4" id="US-20010004686-A1-CLM-00004] 4. A connector according to claim 3 , in which the tubular portion of the piston is constituted by a tube fitted to said proximal portion. [5" id="US-20010004686-A1-CLM-00005] 5. A connector according to claim 3 , in which the distal portion of the piston is integrally manufactured with said proximal portion of the piston. [6" id="US-20010004686-A1-CLM-00006] 6. A connector according to claim 1 , and which has a fixed gasket disposed in the housing around the piston upstream from said outlet of the internal passage of the piston and downstream from the downstream gasket of the piston so as to constitute a sealed space around the piston between said two gaskets, into which space the injection liquid cannot penetrate. [7" id="US-20010004686-A1-CLM-00007] 7. A connector according to claim 5 , in which said fixed gasket is constituted by an elastically-split part designed and disposed so as to cover the piston when it is in its position for closing the inlet duct and to allow the piston to pass therethrough when the piston is pushed downstream by the injection head. [8" id="US-20010004686-A1-CLM-00008] 8. A connector according to claim 6 , and including a spring in said sealed space for urging the piston upstream. [9" id="US-20010004686-A1-CLM-00009] 9. A connector according to claim 1 , in which the portion of the piston which defines the compression chamber is shaped in such a manner that the variation in the volume of the compression chamber is maximal. [10" id="US-20010004686-A1-CLM-00010] 10. A connector according to claim 9 , in which said portion of the piston has a stepped profile. [11" id="US-20010004686-A1-CLM-00011] 11. A connector according to claim 1 , in which the outlet is constituted by the inlet of a catheter tube (or of any other duct in a liquid pathway for enabling liquid to be introduced into the body) integrated in the connector. [12" id="US-20010004686-A1-CLM-00012] 12. A connector according to claim 1 , in which the outlet is constituted by an outlet coupling. [13" id="US-20010004686-A1-CLM-00013] 13. A connector according to claim 1 , in which said end wall of the housing defines an annular shoulder around the outlet of said duct in the housing, which shoulder defines the upstream end of the compression chamber.
类似技术:
公开号 | 公开日 | 专利标题 US6595981B2|2003-07-22|Automatically-closing connector for connecting a liquid injection head to an injection outlet KR101227399B1|2013-01-29|Valved male luer connector having sequential valve timing JP4256776B2|2009-04-22|Male lure with valve US20070083162A1|2007-04-12|Valve for intravenous catheter US20180093086A1|2018-04-05|Medical Valve with Improved Back-Pressure Sealing US20160279328A1|2016-09-29|Multi-valve injection/aspiration manifold with needleless access connection US6371942B1|2002-04-16|Automatic manifold for vascular catheter EP1603631B1|2014-07-16|Valved male luer KR100756081B1|2007-09-05|Medical valve with positive flow characteristics US8277424B2|2012-10-02|Needle-less syringe adapter US6609696B2|2003-08-26|Male luer valve JPH11507275A|1999-06-29|Medical connector US20090105666A1|2009-04-23|Needleless access port valve CA2535600A1|2005-03-03|Needle with sealing valve CA1324743C|1993-11-30|Cannula assembly US20060200072A1|2006-09-07|Needleless access port valves CN107635618A|2018-01-26|Conduit tube component and correlation technique with flow control valve mechanism US20020029020A1|2002-03-07|Apparatus for reducing fluid drawback through a medical valve WO2000056388A3|2001-01-11|Intravenous catheter insertion assembly AU2007201859A1|2007-05-17|Medical valve with positive flow characteristics
同族专利:
公开号 | 公开日 PT1108443E|2005-02-28| EP1108443A1|2001-06-20| AU778397B2|2004-12-02| FR2802432A1|2001-06-22| AU7225900A|2001-06-21| JP4306955B2|2009-08-05| DE60016547T2|2005-12-15| DE60016547D1|2005-01-13| CA2328576C|2009-01-27| ES2232401T3|2005-06-01| JP2001212235A|2001-08-07| US6595981B2|2003-07-22| AT284241T|2004-12-15| CA2328576A1|2001-06-16| EP1108443B1|2004-12-08| FR2802432B1|2002-03-08| DK1108443T3|2005-04-18|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 CN103272302A|2013-05-15|2013-09-04|浙江康泰医疗器械有限公司|Novel positive-pressure joint| US20140086231A1|2002-01-08|2014-03-27|Ipr Licensing, Inc.|Maintaining a maintenance channel in a reverse link of a wireless communications system| US20150174320A1|2013-07-03|2015-06-25|Deka Products Limited Partnership|Infusion Pump Assembly| CN104758997A|2015-04-17|2015-07-08|南通恒泰医疗器材有限公司|Integrated micro-resistance needle-free anti-counterflow infusion positive pressure connector| US9259565B2|2009-06-22|2016-02-16|Np Medical Inc.|Medical valve with improved back-pressure sealing| US10080869B2|2002-07-04|2018-09-25|B. Braun Melsungen Ag|Catheter insertion device| DE102006034161B4|2005-07-22|2018-12-06|B. Braun Medical Inc.|Valves with access opening that does not require a needle| EP2593166B1|2010-07-15|2018-12-19|Becton, Dickinson and Company|A catheter assembly and pierced septum valve| CN109939329A|2013-12-04|2019-06-28|B.布劳恩梅尔松根股份公司|Conduit tube component with reusable valve| US10682500B2|2006-11-03|2020-06-16|B. Braun Melsungen Ag|Catheter assembly and components thereof|FR2604237B1|1986-09-19|1988-12-30|France Materiel Medical|SYSTEM FOR CONNECTING TWO LIQUID CIRCUITS AND APPLICATION TO DIALYSIS DEVICES.| FR2684007B1|1991-11-25|1997-04-18|Vygon|MONOBLOCK CONNECTOR WITH INTERNAL INJECTION NEEDLE FOR CONNECTING A LIQUID CIRCUIT, ESPECIALLY FOR MEDICAL APPLICATIONS.| US5836923A|1994-06-20|1998-11-17|Critical Device Corp.|Needleless injection site with fixed flow rate| US5776113A|1996-03-29|1998-07-07|Becton Dickinson And Company|Valved PRN adapter for medical access devices| IL130482D0|1996-12-16|2000-06-01|Icu Medical Inc|Positive flow valve| US6245048B1|1996-12-16|2001-06-12|Icu Medical, Inc.|Medical valve with positive flow characteristics|US6695817B1|2000-07-11|2004-02-24|Icu Medical, Inc.|Medical valve with positive flow characteristics| JP4996015B2|2001-03-12|2012-08-08|メディキット株式会社|Indwelling catheter| AT363316T|2001-10-09|2007-06-15|Halkey Roberts Corp|MALE LUER VALVE| US7753892B2|2001-11-13|2010-07-13|Nypro Inc.|Anti-drawback medical valve| US6869426B2|2001-11-13|2005-03-22|Nypro Inc.|Anti-drawback medical valve| FR2836832B1|2002-03-08|2005-02-04|Optis France Sa|CONNECTION ASSEMBLY FOR MEDICAL USE FOR THE TRANSFER OF FLUIDS| EP1452192B1|2003-02-27|2016-06-29|Smiths Group plc|Valves and suction catheter assemblies| HK1077154A2|2003-12-30|2006-02-03|Vasogen Ireland Ltd|Valve assembly| EP1990070B1|2004-11-05|2012-01-25|ICU Medical, Inc.|Medical connector having high flow characteristics| US7645274B2|2004-12-10|2010-01-12|Cardinal Health 303, Inc.|Self-sealing male luer connector with multiple seats| US7887519B2|2005-01-14|2011-02-15|Nypro Inc.|Valve with internal lifter| US20060161196A1|2005-01-18|2006-07-20|Widgerow Alan D|Methods of and apparatus for use in medical treatment| US20070088294A1|2005-07-06|2007-04-19|Fangrow Thomas F Jr|Medical connector with closeable male luer| US7815168B2|2006-04-11|2010-10-19|Nypro Inc.|Medical valve with rotating member and method| EP2049194A1|2006-08-11|2009-04-22|Nypro Inc.|Medical valve with expandable member| JP4994775B2|2006-10-12|2012-08-08|日本コヴィディエン株式会社|Needle point protector| US8105314B2|2006-10-25|2012-01-31|Icu Medical, Inc.|Medical connector| US7998134B2|2007-05-16|2011-08-16|Icu Medical, Inc.|Medical connector| US9101748B2|2008-05-08|2015-08-11|Becton, Dickinson And Company|Push-button blood control| US8366684B2|2008-05-12|2013-02-05|Becton, Dickinson And Company|Intravenous catheter blood control device| US7938805B2|2008-05-19|2011-05-10|Becton, Dickinson And Company|Radially compressible blood control valve| US8679090B2|2008-12-19|2014-03-25|Icu Medical, Inc.|Medical connector with closeable luer connector| US9168366B2|2008-12-19|2015-10-27|Icu Medical, Inc.|Medical connector with closeable luer connector| JP5684732B2|2009-02-07|2015-03-18|メリット・メディカル・システムズ・インコーポレーテッド|Connector with valve| USRE45896E1|2009-02-11|2016-02-23|Becton, Dickinson And Company|Systems and methods for providing a catheter assembly| US8574203B2|2009-02-11|2013-11-05|Becton, Dickinson And Company|Systems and methods for providing a flushable catheter assembly| US8361038B2|2009-02-11|2013-01-29|Becton, Dickinson And Company|Systems and methods for providing a flow control valve for a medical device| US8679063B2|2009-02-11|2014-03-25|Becton, Dickinson And Company|Systems and methods for providing a catheter assembly| US8469928B2|2009-02-11|2013-06-25|Becton, Dickinson And Company|Systems and methods for providing a flushable catheter assembly| US8454579B2|2009-03-25|2013-06-04|Icu Medical, Inc.|Medical connector with automatic valves and volume regulator| USD644731S1|2010-03-23|2011-09-06|Icu Medical, Inc.|Medical connector| US8388583B2|2009-08-20|2013-03-05|Becton, Dickinson And Company|Systems and methods for providing a flushable catheter assembly| WO2011139995A2|2010-05-06|2011-11-10|Icu Medical, Inc.|Medical connector with closeable luer connector| US8758306B2|2010-05-17|2014-06-24|Icu Medical, Inc.|Medical connectors and methods of use| US9138572B2|2010-06-24|2015-09-22|Np Medical Inc.|Medical valve with fluid volume alteration| US9028425B2|2010-07-15|2015-05-12|Becton, Dickinson And Company|Vented blood sampling device| US8357119B2|2010-07-15|2013-01-22|Becton, Dickinson And Company|Catheter assembly and pierced septum valve| US8864715B2|2010-09-08|2014-10-21|Becton, Dickinson And Company|Assembly method for catheter with blood control| US8932259B2|2010-09-13|2015-01-13|Becton, Dickinson And Company|Catheter assembly| US8641675B2|2011-03-07|2014-02-04|Becton, Dickinson And Company|Systems and methods for preventing septum damage in an intravascular device| US9259554B2|2011-03-07|2016-02-16|Becton, Dickinson And Company|Systems and methods to compensate for compression forces in an intravascular device| ES2662356T3|2011-04-27|2018-04-06|Kpr U.S., Llc|Safety IV catheter assemblies| WO2012152704A1|2011-05-06|2012-11-15|Sanofi-Aventis Deutschland Gmbh|Active valve for drug delivery| WO2012162259A2|2011-05-20|2012-11-29|Excelsior Medical Corporation|Caps for cannula access devices| ES2813967T3|2011-09-09|2021-03-25|Icu Medical Inc|Medical connectors with fluid resistant mating interfaces| US8628497B2|2011-09-26|2014-01-14|Covidien Lp|Safety catheter| WO2013048768A1|2011-09-26|2013-04-04|Covidien Lp|Safety iv catheter and needle assembly| US9126012B2|2011-10-06|2015-09-08|Becton, Dickinson And Company|Intravenous catheter with duckbill valve| US9089671B2|2011-10-06|2015-07-28|Becton, Dickinson And Company|Systems and methods for sealing a septum within a catheter device| US9155876B2|2011-10-06|2015-10-13|Becton, Dickinson And Company|Port valve of a blood control catheter| US9155864B2|2011-10-06|2015-10-13|Becton, Dickinson And Company|Multiple use blood control valve with center and circumferential slits| US9155863B2|2011-10-06|2015-10-13|Becton, Dickinson And Company|Multiple use stretching and non-penetrating blood control valves| US9358364B2|2011-10-06|2016-06-07|Becton, Dickinson And Company|Activator attachment for blood control catheters| US8834422B2|2011-10-14|2014-09-16|Covidien Lp|Vascular access assembly and safety device| US9579486B2|2012-08-22|2017-02-28|Becton, Dickinson And Company|Blood control IV catheter with antimicrobial properties| US9750928B2|2013-02-13|2017-09-05|Becton, Dickinson And Company|Blood control IV catheter with stationary septum activator| US9695323B2|2013-02-13|2017-07-04|Becton, Dickinson And Company|UV curable solventless antimicrobial compositions| US9320881B2|2013-02-13|2016-04-26|Becton, Dickinson And Company|Septum actuator with insertion depth limiter and compression compensator| US9212772B2|2013-03-15|2015-12-15|Pacific Hospital Supply Co., Ltd|Needle free connector| US10500376B2|2013-06-07|2019-12-10|Becton, Dickinson And Company|IV catheter having external needle shield and internal blood control septum| US9415199B2|2013-06-14|2016-08-16|Skill Partner Limited|Leak proof needleless medical connector| JP5952791B2|2013-09-27|2016-07-13|溪進 蔡|Chemical liquid leakage prevention type needleless infusion connector| CA2932124A1|2013-12-11|2015-06-18|Icu Medical, Inc.|Check valve| US9750925B2|2014-01-21|2017-09-05|Becton, Dickinson And Company|Ported catheter adapter having combined port and blood control valve with venting| CA2945600A1|2014-04-18|2015-10-22|Becton, Dickinson And Company|Multi-use blood control safety catheter assembly| US10376686B2|2014-04-23|2019-08-13|Becton, Dickinson And Company|Antimicrobial caps for medical connectors| US9789279B2|2014-04-23|2017-10-17|Becton, Dickinson And Company|Antimicrobial obturator for use with vascular access devices| US9675793B2|2014-04-23|2017-06-13|Becton, Dickinson And Company|Catheter tubing with extraluminal antimicrobial coating| US10046156B2|2014-05-02|2018-08-14|Excelsior Medical Corporation|Strip package for antiseptic cap| US10232088B2|2014-07-08|2019-03-19|Becton, Dickinson And Company|Antimicrobial coating forming kink resistant feature on a vascular access device| USD786427S1|2014-12-03|2017-05-09|Icu Medical, Inc.|Fluid manifold| USD793551S1|2014-12-03|2017-08-01|Icu Medical, Inc.|Fluid manifold| US10245416B2|2015-10-28|2019-04-02|Becton, Dickinson And Company|Intravenous catheter device with integrated extension tube| US10814106B2|2015-10-28|2020-10-27|Becton, Dickinson And Company|Soft push tabs for catheter adapter| US10525237B2|2015-10-28|2020-01-07|Becton, Dickinson And Company|Ergonomic IV systems and methods| US10357636B2|2015-10-28|2019-07-23|Becton, Dickinson And Company|IV access device having an angled paddle grip| US10744305B2|2015-10-28|2020-08-18|Becton, Dickinson And Company|Ergonomic IV systems and methods| US10493244B2|2015-10-28|2019-12-03|Becton, Dickinson And Company|Extension tubing strain relief| US10639455B2|2015-10-28|2020-05-05|Becton, Dickinson And Company|Closed IV access device with paddle grip needle hub and flash chamber| US10549072B2|2015-10-28|2020-02-04|Becton, Dickinson And Company|Integrated catheter with independent fluid paths| USD835262S1|2016-10-05|2018-12-04|Becton, Dickinson And Company|Intravenous catheter assembly| US10238852B2|2016-10-05|2019-03-26|Becton, Dickinson And Company|Septum housing| USD819802S1|2016-10-05|2018-06-05|Becton, Dickinson And Company|Catheter adapter| USD844781S1|2016-10-05|2019-04-02|Becton, Dickinson And Company|Needle hub| USD837368S1|2016-10-05|2019-01-01|Becton, Dickinson And Company|Catheter adapter grip|
法律状态:
2001-02-26| AS| Assignment|Owner name: VIGON, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HUET, JEAN-MAX;REEL/FRAME:011337/0660 Effective date: 20001211 | 2003-07-02| STCF| Information on status: patent grant|Free format text: PATENTED CASE | 2006-12-14| FPAY| Fee payment|Year of fee payment: 4 | 2010-12-16| FPAY| Fee payment|Year of fee payment: 8 | 2014-12-19| FPAY| Fee payment|Year of fee payment: 12 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 FR9915898||1999-12-16|| FR9915898A|FR2802432B1|1999-12-16|1999-12-16|AUTOMATIC SHUTTER CONNECTOR FOR CONNECTING A LIQUID INJECTION HEAD TO AN INJECTION OUTPUT| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|